- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Iler, Amy_M (1)
-
Rodelius, Isabella_B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Background and AimsAbiotic and biotic components of the environment both limit plant reproduction, but how they interact with one another in combination is less understood. Understanding these interactions is especially relevant because abiotic and biotic environmental components respond differently to various drivers of global change. Here, we aim to understand whether the effects of pollination (biotic component) on plant reproduction depend on soil moisture (abiotic component), two factors known to affect plant reproduction and that are changing with global change. MethodsWe conducted pollen supplementation experiments for two plant species, Delphinium nuttallianum and Hydrophyllum fendleri, in subalpine meadows in the Western USA across 4 years that varied in soil moisture. In a separate 1-year field experiment, we crossed water addition with pollen supplementation factorially. We measured the proportion of fruit set, seeds per fruit and seeds per plant, in addition to stomatal conductance, to determine whether plant physiology responded to watering. Key ResultsIn the 4-year study, only H. fendleri reproduction was pollen limited, and this occurred independently of soil moisture. Experimental water addition significantly increased soil moisture and stomatal conductance for both species. The effect of pollen addition on reproduction depended on the watering treatment only for H. fendleri fruit production. Reproduction in D. nuttallianum was not significantly affected by pollen addition or water addition, but it did respond to interannual variation in soil moisture. ConclusionsAlthough we found some evidence for the effect of a biotic interaction depending on abiotic conditions, it was only for one aspect of reproduction in one species, and it was in an unexpected direction. Our work highlights interactions between the abiotic and biotic components of the environment as an area of further research for improving our understanding of how plant reproduction responds to global change.more » « less
An official website of the United States government
